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Lightlike p-Branes: Mass “Inflation”

and Lightlike Braneworlds

Eduardo Guendelman, Alexander Kaganovich∗

Department of Physics, Ben-Gurion University of the Negev
Beer-Sheva, IZRAEL

Emil Nissimov, Svetlana Pacheva†

Institute for Nuclear Research and Nuclear Energy
Bulgarian Academy of Sciences, Sofia, BULGARIA

Abstract

Lagrangian description of lightlike p-branes is presented in two equiv-
alent forms – a Polyakov-type formulation and a dual to it Nambu-
Goto-type formulation. Next, the properties of lightlike brane dy-
namics in generic gravitational backgrounds of spherically symmetric
and axially symmetric type are discussed in some detail: “horizon
straddling” and “mass inflation” effects for codimension-one light-
like branes and ground state behavior of codimension-two lightlike
“braneworlds”.

1. Introduction

Lightlike branes (LL-branes, for short) are of particular interest in general
relativity primarily due to their role in the effective treatment of many cos-
mological and astrophysical effects: (i) impulsive lightlike signals arising in
cataclysmic astrophysical events [1]; (ii) the “membrane paradigm” theory
of black hole physics [2]; (iii) thin-wall description of domain walls coupled
to gravity [3, 4]. More recently LL-branes became significant also in the
context of modern non-perturbative string theory [5].
Here we first present explicit reparametrization invariant (p + 1)-dimensio-
nal world-volume actions describing LL-brane dynamics in two equivalent
forms: (i) Polyakov-type formulation, and (ii) Nambu-Goto-type formula-
tion dual to the first one.

∗ e-mail addresses: guendel@bgu.ac.il, alexk@bgu.ac.il
† e-mail addresses: nissimov@inrne.bas.bg, svetlana@inrne.bas.bg
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Unlike ordinary Nambu-Goto p-branes (describing massive brane modes)
our models yield intrinsically lightlike p-branes (the induced metric be-
coming singular on-shell) with the additional crucial property of the brane
tension appearing as a non-trivial dynamical degree of freedom. The latter
characteristic feature significantly distinguishes our lightlike p-brane mod-
els from the previously proposed tensionless p-branes (for a review, see
e.g. [6]) which rather resemble a p-dimensional continuous distribution of
massless point-particles.
Next we discuss the properties of LL-brane dynamics in generic gravita-
tional backgrounds. The case with two extra dimensions (codimension-
two LL-branes) is studied from the point of view of “braneworld” scenar-
ios. Unlike conventional braneworlds, where the underlying branes are of
Nambu-Goto type and in their ground state they position themselves at
some fixed point in the extra dimensions of the bulk space-time, our light-
like braneworlds perform in the ground state non-trivial motions in the
extra dimensions – planar circular, spiral winding etc depending on the
topology of the extra dimensions.
The special case of codimension-one LL-branes is qualitatively different.
Here the LL-brane dynamics dictates that the bulk space-time with a
bulk metric of spherically or axially symmetric type must possess an event
horizon which is automatically occupied by the LL-brane (“horizon strad-
dling”). We study several cases of “horizon straddling” solutions. In the
case of Kerr “horizon straddling” by a LL-brane there is the additional
effect of brane rotation “dragged” by the Kerr black hole.
For the inner Reissner-Nordström horizon we find a time symmetric “mass
inflation” effect, which also holds for de Sitter horizon. In this case the dy-
namical tension of the LL-brane blows up as time approaches ±∞ due to
its exponential quadratic time dependence. For the Schwarzschild and the
outer Reissner-Nordström horizons, on the other hand, we obtain “mass
deflationary” scenarios where the dynamical LL-brane tension vanishes
at large positive or large negative times. Another set of solutions with
asymmetric (w.r.t. t → −t) exponential linear time dependence of the
LL-brane tension also exists. By fine tuning one can obtain a constant
time-independent brane tension as a special case. The latter holds in par-
ticular for LL-branes moving in extremal Reissner-Nordström or maximally
rotating Kerr black hole backgrounds.

2. World-Volume Actions for Lightlike Branes

In refs.[7, 8, 9] we have proposed the following generalized Polyakov-type
formulation of the Lagrangian dynamics of LL-branes in terms of the world-
volume action:

S =
∫

dp+1σ Φ(ϕ)
[
−1

2
γabgab + L

(
F 2

)]
. (1)

Here γab denotes the intrinsic Riemannian metric on the world-volume;

gab ≡ ∂aX
µ∂bX

νGµν(X) (2)
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is the induced metric (the latter becomes singular on-shell – lightlikeness,
cf. second Eq.(7) below);

Φ(ϕ) ≡ 1
(p + 1)!

εI1...Ip+1ε
a1...ap+1∂a1ϕ

I1 . . . ∂ap+1ϕ
Ip+1 (3)

is an alternative non-Riemannian reparametrization-covariant integration
measure density replacing the standard

√−γ ≡
√
−det ‖γab‖ and built

from auxiliary world-volume scalars
{
ϕI

}p+1

I=1
;

Fa1...ap = p∂[a1
Aa2...ap] , F ∗a =

1
p!

εaa1...ap

√−γ
Fa1...ap (4)

are the field-strength and its dual one of an auxiliary world-volume (p−1)-
rank antisymmetric tensor gauge field Aa1...ap−1 with Lagrangian L(F 2)
(F 2 ≡ Fa1...apFb1...bpγ

a1b1 . . . γapbp).

Equivalently one can rewrite (1) as:

S =
∫

dp+1σ χ
√−γ

[
−1

2
γabgab + L

(
F 2

)]
, χ ≡ Φ(ϕ)√−γ

(5)

The composite field χ plays the role of a dynamical (variable) brane tension.

For the special choice L
(
F 2

)
=

(
F 2

)1/p the above action becomes invariant
under Weyl (conformal) symmetry:

γab −→ γ′ab = ρ γab , ϕi −→ ϕ′ i = ϕ′ i(ϕ) (6)

with Jacobian det
∥∥∥∂ϕ′ i

∂ϕj

∥∥∥ = ρ.

Consider now the equations of motion corresponding to (1) w.r.t. ϕI and
γab:

1
2
γcdgcd − L(F 2) = M ,

1
2
gab − F 2L′(F 2)

[
γab −

F ∗
a F ∗

b

F ∗ 2

]
= 0 . (7)

Here M is an integration constant and F ∗ a is the dual field strength (4).
Both Eqs.(7) imply the constraint L

(
F 2

)− pF 2L′
(
F 2

)
+ M = 0, i.e.

F 2 = F 2(M) = const on− shell . (8)

The second Eq.(7) exhibits on-shell singularity of the induced metric (2):

gabF
∗ b = 0 . (9)
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Further, the equations of motion w.r.t. world-volume gauge field Aa1...ap−1

(with χ as defined in (5) and accounting for the constraint (8)):

∂[a

(
F ∗

b] χ
)

= 0 (10)

allow us to introduce the dual “gauge” potential u:

F ∗
a = const

1
χ

∂au . (11)

We can rewrite second Eq.(7) (the lightlike constraint) in terms of the dual
potential u as:

γab =
1

2a0
gab − 2

χ2
∂au∂bu , a0 ≡ F 2L′

(
F 2

) |F 2=F 2(M)= const (12)

(L′(F 2) denotes derivative of L(F 2) w.r.t. the argument F 2). From (11)
and (8) we have the relation:

χ2 = −2γab∂au∂bu , (13)

and the Bianchi identity ∂aF
∗ a = 0 becomes:

∂a

( 1
χ

√−γγab∂bu
)

= 0 . (14)

Finally, the Xµ equations of motion produced by the (1) read:

∂a

(
χ
√−γγab∂bX

µ
)

+ χ
√−γγab∂aX

ν∂bX
λΓµ

νλ(X) = 0 (15)

where Γµ
νλ = 1

2Gµκ (∂νGκλ + ∂λGκν − ∂κGνλ) is the Christoffel connection
for the external metric.
It is now straightforward to prove that the system of equations (13)–(15) for
(Xµ, u, χ), which are equivalent to the equations of motion (7)–(10),(15) re-
sulting from the original Polyakov-type LL-brane action (1), can be equiv-
alently derived from the following dual Nambu-Goto-type world-volume
action:

SNG = −
∫

dp+1σ T

√
−det ‖gab − 1

T 2
∂au∂bu‖ . (16)

Here gab is the induced metric (2); T is dynamical tension simply related to
the dynamical tension χ from the Polyakov-type formulation (5) as T 2 =
χ2

4a0
with a0 – same constant as in (12).
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Henceforth we will consider the initial Polyakov-type form (1) of the LL-
brane world-volume action. Invariance under world-volume reparametriza-
tions allows to introduce the standard synchronous gauge-fixing conditions:

γ0i = 0 (i = 1, . . . , p) , γ00 = −1 (17)

Also, in what follows we will use a natural ansatz for the “electric” part of
the auxiliary world-volume gauge field-strength:

F ∗i = 0 (i = 1, . . ., p) , i.e. F0i1...ip−1 = 0 , (18)

The Bianchi identity (∂aF
∗ a = 0) together with (17)–(18) and the definition

for the dual field-strength in (4) imply:

∂0γ
(p) = 0 where γ(p) ≡ det ‖γij‖ . (19)

Then LL-brane equations of motion acquire the form (recall definition of
gab (2)):

g00 ≡
.

X
µ
Gµν

.
X

ν
= 0 , g0i = 0 , gij − 2a0 γij = 0 (20)

(Virasoro-like constraints), where the M -dependent constant a0 (the same
as in (12)) must be strictly positive;

∂iχ = 0 (remnant of Eq.(10)) ; (21)

−
√

γ(p)∂0 (χ∂0X
µ) + ∂i

(
χ

√
γ(p)γij∂jX

µ

)

+χ

√
γ(p)

(
−∂0X

ν∂0X
λ + γkl∂kX

ν∂lX
λ
)

Γµ
νλ = 0 . (22)

3. Lightlike Branes in Gravitational Backgrounds:
Codimension-Two

Let us split the bulk space-time coordinates as:

(Xµ) = (xa, yα) ≡ (
x0 ≡ t, xi, yα

)
(23)

a = 0, 1, . . . , p , i = 1, . . . , p , α = 1, . . . , D − (p + 1)

and consider background metrics Gµν of the form:

ds2 = −A(t, y)(dt)2 + C(t, y)hij(~x)dxidxj + Bαβ(t, y)dyαdyβ (24)

Here we will discuss the simplest non-trivial ansatz for the LL-brane em-
bedding coordinates:

Xa ≡ xa = σa , Xp+α ≡ yα = yα(τ) , τ ≡ σ0 . (25)
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and will take the particular solution χ = const of Eq.(21) for the dynamical
tension (for more general time-dependent dynamical tension solutions, see
next Section).
Now the LL-brane (gauge-fixed) equations of motion (19)–(22) describing
its dynamics in the extra dimensions reduce to:

.
y

α ∂

∂yα
A |y=y(τ)= 0 ,

.
y

α ∂

∂yα
C |y=y(τ)= 0 , (26)

−A(y(τ)) + Bαβ(y(τ))
.
y

α .
y

β
= 0 , (27)

..
y

α
+

.
y

β .
y

γ
Γα

βγ + Bαβ

(
p a0

C(y)
∂

∂yβ
C(y) +

1
2

∂

∂yβ
A(y)

)
|y=y(τ)= 0 (28)

(recall a0 = const as in (12)).

Example 1: Two Flat Extra Dimensions. In this case:

yα = (ρ, φ) , Bαβ(y)dyαdyβ = dρ2 + ρ2dφ2 ; (29)
A = A(ρ) , C = C(ρ) ; ρ = ρ0 = const ; φ(τ) = ωτ , (30)

where:

ω2 =
A(ρ0)

ρ2
0

, A(ρ0) = ρ0

(
p a0

C(ρ)
∂ρC +

1
2
∂ρA)

)
|ρ=ρ0

. (31)

Thus, we find that the LL-brane performs a planar circular motion in the
flat extra dimensions whose radius ρ0 and angular velocity ω are determined
from (31). This property of the LL-branes has to be contrasted with the
usual case of Nambu-Goto-type braneworlds which (in the ground state)
occupy a fixed position in the extra dimensions.

Example 2: Toroidal Extra Dimensions. In this case:

yα = (θ, φ) , 0 ≤ θ, φ ≤ 2π , Bαβ(y)dyαdyβ = dθ2 + a2dφ2 (32)

The solutions read:

θ(τ) = ω1τ , φ(τ) = ω2τ (33)

where the admissible form of the background metric must be:

A = A(θ −Nφ) , C = C(θ −Nφ) , A′(0) = 0 , C ′(0) = 0 , (34)

(N – arbitrary integer), with angular frequencies ω1,2 in (33):

(ω1)2 =
A(0)

1 + a2/N2
, ω2 =

ω1

N
. (35)

We conclude that the LL-brane performs a spiral motion in the toroidal
extra dimensions with winding frequencies as in (35).
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4. Lightlike Branes in Gravitational Backgrounds:
Codimension-One

This case is qualitatively different from the case of codimension
≥ 2. Here the metric (24) acquires the form of a general spherically sym-
metric metric:

ds2 = −A(t, y)(dt)2 + C(t, y)hij(~θ)dθidθj + B(t, y)(dy)2 (36)

where ~x ≡ ~θ are the angular coordinates parametrizing the sphere Sp.
The LL-brane equations of motion (19)–(22) now take the form:

−A + B
.
y

2
= 0 , i.e.

.
y= ±

√
A

B
, ∂tC+

.
y ∂yC = 0 (37)

∂τχ + χ

[
∂t ln

√
AB ± 1√

AB

(
∂yA + p a0∂y lnC

)]

y=y(τ)

= 0 (38)

First let us consider static spherically symmetric metrics in standard coor-
dinates:

ds2 = −A(y)(dt)2 + A−1(y)(dy)2 + y2hij(~θ)dθidθj (39)

where y ≡ r is the radial-like coordinate. Here we obtain:
.
y= 0 , i.e. y(τ) = y0 = const , A(y0) = 0 , (40)

implying that the LL-brane positions itself automatically on the horizon y0
of the background metric (“horizon straddling”). Further, for the dynami-
cal tension we get:

χ(τ) = χ0 exp
{
∓τ

(
∂yA |y=y0

+
2p a0

y0

)}
, χ0 = const . (41)

Thus, we find a time-asymmetric solution for the dynamical brane tension
which (upon appropriate choice of the signs (∓) depending on the sign of
the constant factor in the exponent on the r.h.s. of (41)) exponentially
“inflates” or “deflates” for large times.
Next consider spherically symmetric metrics in Kruskal-Szekeres-like coor-
dinates:

ds2 = A
(
y2 − t2

) [−(dt)2 + (dy)2
]
+ C

(
y2 − t2

)
hij(~θ)dθidθj (42)

where (t, y) play the role of Kruskal-Szekeres’s (v, u) coordinates for Schwarz-
schild metrics [10]. Here the LL-brane equations of motion yield:

.
y= ±1 , i.e. y(τ) = ±τ ,

(
y2 − t2

) |t=τ,y=y(τ)= 0 , (43)
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i.e., again the LL-brane locates itself automatically on the horizon (“horizon
straddling”), whereas for the dynamical tension we obtain:

χ(τ) = χ0 exp
{
−τ2 p a0 C ′(0)

A(0)C(0)

}
. (44)

Thus, we find a time-symmetric “inflationary” or “deflationary” solution
with quadratic time dependence in the exponential for the dynamical brane
tension (depending on the sign of the constant factor in the exponent on
the r.h.s. of (44)).
Let us also consider “cosmological”-type metrics:

ds2 = −(dt)2 + S2(t)
[
(dy)2 + f2(y)hij(~θ)dθidθj

]
(45)

where f(y) = y, sin(y), sinh(y). The LL-brane equations of motion give:

.
y= ± 1

S(τ)
, S2(τ) f2(y(τ)) =

1
c2
0

, c0 = const , (46)

implying: S(τ) = ± 1
c0 y0

e−c0 τ , S(τ) = ± 1
c0

cosh (c0(τ + τ0)) or
S(τ) = ∓ 1

c0
sinh (c0(τ + τ0)), respectively, where y0, τ0 = const.

For the dynamical brane tension we obtain “inflation”/“deflation” at τ →
±∞:

χ(τ) = χ0(S(τ))2p a0−1
, χ0 = const (47)

Example 1: de Sitter embedding space metric in Kruskal-Szekeres-
like (Gibbons-Hawking [11]) coordinates. In this case:

ds2 = A(y2 − t2)
[−(dt)2 + (dy)2

]
+ R2(y2 − t2)hij(~θ)dθidθj (48)

A(y2 − t2) =
4

K(1 + y2 − t2)2
, R(y2 − t2) =

1√
K

1− (y2 − t2)
1 + y2 − t2

(49)

(K is the cosmological constant).
We obtain exponential “inflation” at τ → ±∞ for the dynamical tension
of LL-branes occupying de Sitter horizon:

χ(τ) = χ0 exp{τ2 p a0K} . (50)

Example 2: Schwarzschild background metric in Kruskal-Szekeres
coordinates [10]. In this case (here we take D = p + 2 = 4)

ds2 = A(y2 − t2)
[−(dt)2 + (dy)2

]
+ R2(y2 − t2)hij(~θ)dθidθj (51)



Lightlike p-Branes: Mass “Inflation” and Lightlike Braneworlds 179

A =
4R3

0

R
exp

{
− R

R0

}
,

(
R

R0
− 1

)
exp

{
R

R0

}
= y2 − t2 (52)

(here R0 ≡ 2GNm). We obtain exponential “deflation” at τ → ±∞ for the
dynamical tension of LL-branes sitting on the Schwarzschild horizon:

χ(τ) = χ0 exp
{
−τ2 a0

R2
0

}
. (53)

Example 3: Reissner-Nordström background metric in Kruskal-
Szekeress-like coordinates. In this case (here again D = p + 2 = 4):

ds2 = A(y2 − t2)
[−(dt)2 + (dy)2

]
+ R2(y2 − t2)gij(~θ)dθidθj . (54)

In the region around the outer Reissner-Nordström horizon R = R(+), i.e.,
for R > R(−) (R = R(−) – inner Reissner-Nordström horizon), the functions
A(x), R(x) are defined as:

y2 − t2 =
R−R(+)(

R−R(−)

)R2
(−)

/R2
(+)

exp

{
R

R(+) −R(−)

R2
(+)

}
(55)

A(y2 − t2) =
4R4

(+)

(
R−R(−)

)1+R2
(−)

/R2
(+)

(
R(+) −R(−)

)2
R2

exp

{
−R

R(+) −R(−)

R2
(+)

}
(56)

We find here exponentially “deflating” tension for the LL-brane sitting on
the outer Reissner-Nordström horizon:

χ(τ) = χ0 exp

{
−τ2 a0

R2
(+)

(
1− R(−)

R(+)

)}
(57)

(a phenomenon similar to the case of LL-brane sitting on Schwarzschild
horizon (53)).
In the region around the inner Reissner-Nordström horizon R = R(−), i.e.,
for R < R(+), the functions A(x), R(x) are given by:

y2 − t2 =
R−R(−)(

R−R(+)

)R2
(+)

/R2
(−)

exp

{
R

R(−) −R(+)

R2
(−)

}
(58)

A(y2 − t2) =
4R4

(−)

(
R(+) −R

)1+R2
(+)

/R2
(−)

(
R(−) −R(+)

)2
R2

exp

{
−R

R(−) −R(+)

R2
(−)

}
(59)
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In this case we obtain exponentially “inflating” tension for the LL-brane
occupying the inner Reissner-Nordström horizon:

χ(τ) = χ0 exp

{
τ2 a0

R2
(−)

(
R(+)

R(−)
− 1

)}
. (60)

The latter effect is similar to (50) – the exponential brane tension “inflation”
on de Sitter horizon.

5. Lightlike Branes in Kerr Black Hole and Black
String Backgrounds

Let us consider D=4-dimensional Kerr background metric in the standard
Boyer-Lindquist coordinates (see e.g. [12]):

ds2 = −A(dt)2 − 2Edt dϕ +
Σ
∆

(dr)2 + Σ(dθ)2 + D sin2 θ(dϕ)2) , (61)

A ≡ ∆− a2 sin2 θ

Σ
, E ≡ a sin2 θ

(
r2 + a2 −∆

)

Σ
(62)

D ≡
(
r2 + a2

)2 −∆a2 sin2 θ

Σ
, (63)

where Σ ≡ r2 + a2 cos2 θ , ∆ ≡ r2 + a2− 2Mr, and the following ansatz for
the LL-brane embedding (here p = 2):

X0 ≡ t = τ , r = r(τ) , θ = σ1 , ϕ = σ2 + ϕ̃(τ) . (64)

In this case the LL-brane equations of motion (19)–(20) acquire the form:

−A +
Σ
∆

.
r
2 +D sin2 θ

.
ϕ

2 −2E
.
ϕ= 0

−E + D sin2 θ
.
ϕ= 0 ,

d

dτ

(
DΣsin2 θ

)
= 0 . (65)

Inserting the ansatz (64) into (65) we obtain:

r = r0 = const with ∆(r0) = 0 , i.e. r0 − Kerr horizon , (66)

ω ≡ .
ϕ=

a

r2
0 + a2

− constant angular velocity . (67)

Among the Xµ-equations of motion (22) only the X0-equation yields addi-
tional information, namely, we obtain from the latter an exponential “in-
flating”/”deflating” solution for the dynamical LL-brane tension in Kerr
black hole background:

χ(τ) = χ0 exp
{
∓τ

( 1
M

− 1
r0

)}
. (68)
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From (66)–(68) we conclude that, similarly to the spherically symmetric
case, LL-branes moving as test branes in Kerr rotating black hole back-
ground automatically straddle the Kerr horizon and in addition they are
“dragged” (rotate along) with angular velocity ω given in (67). Note that
the latter expression coincides precisely with the definition of Kerr horizon’s
angular velocity (Eq.(6.92) in ref.[12]). Furthermore, as in the spherically
symmetric case we find “mass inflation/deflation” effect on Kerr horizon
via the exponential time dependence of the dynamical LL-brane tension.
The above analysis applies straightforwardly to the case of lightlike string
(p = 1) moving in D = 4 Kerr black hole background, i.e., a case of
codimension two. Here the lightlike string positions itself automatically on
the equator of the horizon (66) (r = r0 , θ = π

2 ) and again rotates along
the latter with the angular velocity (67).
Along the same lines we can analyze the dynamics of codimension-two test
LL-brane (p = 2) in a D = 5 boosted black string background [13]. The
metric of the latter reads:

ds2 = −A(dt)2 +
(dr)2

f
+ r2

[
(dθ)2 + sin2 θ (dϕ)2

]
+ B(dz)2 − 2Edt dz

(69)

A(r) ≡ 1− (1− f(r)) cosh2 β , B(r) ≡ 1 + (1− f(r)) sinh2 β ,

E(r) ≡ −(1− f(r)) sinhβ coshβ , f(r) ≡ 1− r0

r
, (70)

where β is the boost rapidity parameter, and we employ the following ansatz
for the LL-brane embedding:

X0 ≡ t = τ , r = r(τ) , θ = σ1 , ϕ = σ2 , z = z(τ) . (71)
Inserting (71) into LL-brane equations of motion (19)–(22) we obtain:
r(τ) = r0 , z(τ) = ω τ + z0 with ω = − tanhβ , χ = const . (72)

In other words the codimension-two test LL-brane automatically occupies
the sphere S2 of the S2×S1 horizon of the boosted black string and winds
the circle S1 of the horizon with angular velocity ω given in (72).

6. Further Developments and Outlook

Codimension one LL-branes possess natural couplings to bulk Maxwell Aµ

and Kalb-Ramond Aµ1...µp+1 gauge fields (D − 1 = p + 1, see refs.[7]):

S̃LL =
∫

dp+1σ Φ(ϕ)
[
−1

2
γab∂aX

µ∂bX
νGµν(X) + L

(
F 2

)]

−q

∫
dp+1σεab1...bpFb1...bp∂aX

µAµ(X)

− β

(p + 1)!

∫
dp+1σεa1...ap+1∂a1X

µ1 . . . ∂ap+1X
µp+1Aµ1...µp+1(X)
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As shown in [7] by considering bulk Einstein-Maxwell+Kalb-Ramond-field
system coupled to a LL-brane:

S =
∫

dDx
√
−G

[
R(G)

16πGN
− 1

4e2
FµνFµν − 1

p!2
Fµ1...µDFµ1...µD

]
+ S̃LL (73)

the LL-brane can serve as a material and charge source for gravity and
electromagnetism and, furthermore, it generates dynamical cosmological
constant through the coupling to the Kalb-Ramond bulk field:

K =
8πGN

p(p + 1)
β2 . (74)

There exist the following static spherically symmetric solutions of the cou-
pled system. The bulk space-time consists of two regions with different
geometries separated by a common horizon occupied by the LL-brane. The
matching of the metric components across the horizon reads (using the
same notations as in (39)):

A(−)(y0) = 0 = A(+)(y0) ,
(
∂yA(+) − ∂yA(−)

)
y=y0

= − 16πGN

(2a0)p/2−1
χ (75)

As discussed in more details in a forthcoming paper [14], conditions (75)
allow for a non-singular black hole type solution where the geometry of the
interior region (below the horizon) is de-Sitter with dynamically generated
cosmological constant K (74), whereas the outer region’s geometry (above
the horizon) is Schwarzschild or Reissner-Nordström.
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